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A B S T R A C T

The accurate and efficient representation of a signal in terms of elementary atoms has been a challenge in many
signal processing applications including harmonic analysis. The wavelet bases have been proved to be very
efficient and flexible atoms. Towards the goal of obtaining optimal wavelet bases, we present a simple and
efficient parametrization technique for constructing linear phase biorthogonal discrete-time wavelet bases that
have joint time–frequency localization (JTFL) close to the lower bound of 0.25. In this paper, we first develop a
parametrization technique to design biorthogonal filter banks (FBs). Then an optimization method is
formulated to design jointly time–frequency localized discrete wavelet bases employing the designed FBs.
Finally, the performance of the optimal wavelet bases is evaluated in image coding application. The proposed
parametrization method presents a general and yet a very simple framework to construct a linear phase
biorthogonal FB of desired order, with the prescribed number of vanishing moments (VMs) and free
parameters. Several examples are presented to demonstrate the effectiveness and flexibility of the technique
to design different classes of FB with various degrees of freedom. The performance of the designed FBs is
compared with the other popular biorthogonal wavelet FBs.

1. Introduction

Decomposing a signal into its elementary atoms or bases is
important in many signal processing applications and harmonic
analysis. In the analysis of non-stationary signals, joint time–frequency
localization (JTFL) of the bases is of paramount importance. However,
the uncertainty principle poses a fundamental limit on the JTFL. It
states that a signal cannot be arbitrarily localized in time and frequency
simultaneously. Thus, the central challenge in harmonic and signal
analysis is to obtain optimal bases, which are localized well in both time
and frequency. Wavelet bases have very good JTFL and therefore have
emerged as a powerful tool for signal analysis. Wavelet bases are
extensively used in the analysis of non-stationary signals and have
found applications in computer vision, transient and edge detection,
medical imaging, pitch estimation, and image compression [1–3].
Besides, a variety of optimality criteria such as orthogonality, regular-
ity, frequency selectivity, ripple energies in passband as well as in
stopband and JTFL of the filters are considered to design optimal
wavelet filter banks (WFBs) [4–7]. The selection of optimality criteria
to design a FB depends on the application. The time–frequency

localization of the filters is found playing the central role in many
signal processing applications [8]. Therefore, in recent times, the WFBs
have been designed considering JTFL as an optimality criterion [9–11].
The performance of JTFL optimized filters has been found to be
excellent in image segmentation, image compression, feature extrac-
tion and edge detection by Wilson and Granlund [8]. In image coding
applications, the performance of JTFL optimized orthogonal WFBs has
been found to be better than other FBs by Monro et al. [12] and Morris
et al. [13]. Recently, Dandach and Siohan [14] obtain that JTFL
optimized WFBs perform well in reducing inter-symbol interference
(ISI) and inter-channel interference in orthogonal frequency division
multiplexing (OFDM) multi-carrier systems. Davidson et al. [15]
demonstrate that the JTFL optimized WFBs are capable of reducing
ISI in pulse shaping system. The performance of JTFL optimized WFBs
has been found superior in compression and denoising of electrocar-
diogram (ECG) signals [7,16]. Thus, the JTFL is a pertinent criterion in
designing WFBs.

There are mainly two techniques to design two-channel perfect
reconstruction (PR) FBs: (i) factorization of Lagrange half band
polynomial (LHBP) [17–20] and (ii) lattice structure and lifting
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scheme [21,22]. In factorization of LHBP, a half band product filter is
first designed, and is then factored into the analysis and synthesis low-
pass filters. Cohen et al. [19] have proposed a design method, for
compactly supported biorthogonal WFBs, in which a LHBP which has
the maximum number of zeros at, z = −1, is factorized to obtain
analysis and synthesis low-pass filters. The LHBP is also known as a
maximally flat filter. One of the limitations of this method is that we do
not have any flexibility to control or optimize any attribute pertaining
to the WFBs. Another disadvantage of this method is that the count of
spectral factors grow linearly with respect to the degree of LHBP.
Further, factorization of LHBP becomes increasingly difficult when the
number of zeros at z = −1 increases. The FB design methods using
lattice structures have been presented by Vaidyanathan and Hong [21]
as well as by Vetterli and Herley [23]. In such structures, perfect
reconstruction and linear phase properties are structurally imposed.
But the vanishing moments (VMs) conditions are difficult to be
incorporated in these structures as quantization of lattice parameters
usually results in loss of VMs. Further, the number of lattice para-
meters grows linearly with the lengths of filters involved. The lifting
scheme [22] requires fewer numerical computations than the lattice
structure. However, VMs are almost lost due to quantization, similar to
the lattice structures.

Therefore, a parametrization technique is highly desirable where
both PR and VMs conditions can be imposed structurally, and the
number of parameters remains fixed irrespective of the length of the
filters. Aiming to achieve this objective, Tay [24] has presented a
parametrization based technique to construct two-channel linear phase
biorthogonal FBs. Herein, the author constructs families of 9/7 and 6/
10 FBs, and derives their corresponding one-parameter and two-
parameter expressions. Tay [24] also considered a family of 9/11 FBs
with two free parameters; however, the explicit parametric expression
for filters were not obtained. Though, the proposed parametrization
technique presents an effective strategy to optimize the desired
attributes of the FB, the parametrization technique is not general and
is restrictive. The author considers the design of a family of a few FBs
(9/7 and 6/10) with at the most two degrees of freedom only. In this
paper, we propose a quite general framework to design parametrized
biorthogonal FBs. The main differences between the proposed method
and the method of Tay [24] are as follows: (i) The proposed
parametrization technique is quite general and non-restrictive unlike
the techniques presented by Tay [24]. The proposed method presents a
simple framework for constructing a parametric FB of any order with
the prescribed number of VMs and free parameters. Tay designs
families of only lower order FBs, viz. 9/7 and 6/10, with at the most
two free parameters, whereas we design relatively higher order FBs
such as 9/15, 10/14, 8/16, 9/13, 13/11, 9/11, 10/10, 7/13, 8/12, 6/
14, 5/15, 4/16 with the desired degrees of freedom (with one, two,
three, four and more). The increased number of freedoms provides
greater flexibility and control in the optimization. (ii) The prime
objective of Tay [24] was to obtain filters with rational coefficients,
whereas our aim is to obtain time–frequency localized discrete
biorthogonal wavelet bases. Recently, Murugesan and Tay [25] have
extended the work of Tay [24] to design higher order FBs employing
the same philosophy of [24], by reducing the number of VMs. However,
there are certain differences between the method proposed by us and
that of [25]. The method of Murugesan and Tay [25] is restrictive. The
fundamental restriction is that one cannot reduce VMs of both analysis
as well as synthesis low-pass filters, simultaneously. The reduction on
both filters leads to a system of non-linear equations. The solution of
the set of nonlinear equations is not only difficult but also gives
multiple and irrational solutions. However, in our proposed method it
is possible to relax VMs on both filters simultaneously and still, need to
solve a set of linear equations only. The equations yield a unique
solution. Thus our method is more general and has lesser restrictions
than the method of Murugesan and Tay [25] and thus applicable to
design of any arbitrary biorthogonal pair of filters. Further, the aim of

authors in [25] is to design FBs with rational coefficients whereas we
intend to construct optimal JTFL wavelet bases.

Parhizkar et al. [26] design JTFL optimized windows employing
circular spreads, proposed by Breitenberger [27]. Recently, Starosielec
and Hagele [28] design JTFL optimized windows using variance based
spreads. However, authors [26,28] do not consider the design of a FB.
Tazebay and Akansu [29] design progressively time–frequency opti-
mized subband tree structured orthogonal FBs. Tay et al. [7] design
optimal root mean squared (RMS) bandwidth orthogonal filters. Morris
and his collaborators [16,30,31] design JTFL localized orthogonal
wavelets by optimizing lattice parameters. In the above approaches,
authors consider the design of optimal orthogonal FBs without
addressing the design of optimal biorthogonal WFBs. Although,
orthogonal FBs satisfy the energy preservation property, they cannot
simultaneously have linear phase property which is highly desirable in
image coding applications. The linear phase property enables us to use
symmetric extension methods which facilitate us to handle boundaries
of compactly supported signals. The linear phase property also leads to
faster and efficient implementation of FBs. Sharma et al. [10,11,32]
present a class of JTFL optimized linear phase biorthogonal WFBs
where the optimally time–frequency localized analysis low-pass filter
(ALF) and synthesis low-pass filter (SLF) have been designed using an
eigenfilter based technique. Similarly, Tay [33] also designs a special
class of optimal biorthogonal FBs called half band pair FBs employing
Bernestein polynomials where ALF and SLF are optimized for their
JTFL. It is to be noted that iterations of the optimal ALF and SLF do
not yield optimal discrete wavelet bases. Sharma et al. [34] also design
a class of optimal biorthogonal WFBs in which they minimize the JTFL
of the wavelet functions in L ( )2  instead of ALF and SLF in l ( )2  .
However, the optimization of a wavelet function alone does not ensure
the localization of all other bases employed in the multilevel decom-
position of a signal.

In this paper, in order to exploit advantages of both the linear phase
and JTFL properties, we propose a method to design time–frequency
localized compactly supported linear phase biorthogonal WFBs. Here,
the optimality criterion considers the JTFL of all basis sequences
(which are obtained from iterations of the filters of the underlying FB)
of the analysis and synthesis discrete-time wavelet bases. For the given
J number of decomposition levels, the number of basis sequences
corresponding to the wavelet basis is J + 1. To obtain optimal wavelet
bases, we first design parametrized linear phase PR two-channel FBs
with the prescribed VMs (regularity), lengths and degrees of freedom.
This is followed by the optimization of independent (free) parameters
to obtain FBs that yield optimal time–frequency localized discrete
wavelet bases in l ( )2  . Finally, the performance of the designed wavelet
bases has been evaluated in image compression application.

The proposed parametrization technique is based on the following
simple idea: some VMs (zeros at z = −1) of the LHBP are freed
(relaxed) to obtain free parameters. This is followed by obtaining a
system of linear equations which is derived from the half band
condition on the product filter. The solution of the set of equations
yields parametric expressions for filter coefficients. The entire proposed
work can be summarized as follows: (i) First, we fix the number of free
parameters, VMs and lengths of analysis and synthesis filters. (ii)
Secondly, the ALF is defined as a symmetric polynomial in z. The
polynomial can be expressed as the product of two factors. One factor is
the binomial polynomial whose all roots are at z = −1. The other factor
is the polynomial which contains free parameters. We refer to this
factor as the free-polynomial. The coefficients of the free-polynomial
are the free parameters. The SLF is also defined as a symmetric
polynomial which can be expressed as a product of a binomial factor
and a remainder polynomial. The coefficients of the remainder poly-
nomial are obtained in terms of free parameters by solving a set of
linear equations. (iii) We derive the system of linear equations from the
half band condition on the product filter. The condition states that all
coefficients corresponding to even powers of z of the product poly-
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nomial should be zero except the constant term. Subsequently, the
system of equations is solved and all filter coefficients are expressed in
terms of free parameters. (iv) Finally, these free parameters are
optimized to obtain FBs that yield time–frequency optimized discrete
wavelet bases. Having obtained time–frequency localized WFBs, we
employ the optimized FBs in an image coding application, for their
performance evaluation and comparison with popular FBs.

The salient features of the proposed parametrization technique can
be summarized as follows:

• The proposed parametrization technique is general and less restric-
tive than the existing parametrization based techniques [24,25]. We
can design FBs of any order with the desired number of free
parameters and VMs. This approach also avoids the factorization
of the product polynomial, unlike the method of [17,35].

• We have explicitly obtained parametric expressions of analysis and
synthesis filters of higher order FBs. These parametrized filter
coefficients can be easily optimized, as there is no restriction on
the free parameters.

• The optimality criterion takes into account JTFL of all discrete-time
wavelet bases for the given number of decomposition levels. Further,
we consider three different objective functions to obtain the desired
time–frequency localized FBs.

• In the image coding application, the performance of the designed
JTFL optimized FBs has been found better than the popular
equivalent Cohen–Daubechies–Feauveau (CDF) FBs [19] as well
as a previously designed JTFL optimized FBs by Sharma et al. [10].

2. Problem formulation

Fig. 1 depicts a typical two-channel biorthogonal FB [23] where
H z( )0 and F z( )0 are ALF and SLF, respectively. H z( )1 and F z( )1 represent
analysis high-pass filter and synthesis high-pass filter, respectively.
Defining the product filter as

P z z H z F z( ) = ( ) ( )l
0 0 (1)

where l is an odd integer, the expression for perfect reconstruction (half
band) condition becomes [23],

P z P z( ) + (− ) = 2 (2)

The product filter P(z) is a symmetric (zero phase) polynomial
expansion whose coefficients corresponding to even powers of z are
zero, except for the term (z0) which carries a coefficient 1. The filter
P(z) is also known as half band filter. Hence, the design of two-channel
PR FB reduces to the design of a half band filter P(z). In case of two-
channel FBs the PR condition is equivalent to the biorthogonality
condition [1,23]. Let us consider the LHBP, P(z), which has a
maximum number of zeros at z = −1 (zeros at z = −1 are referred to
as VMs)

P z z z R z( ) = (1 + ) ( )m
m m

m4 −2
−1 2

2 −2 (3)

where

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭∑R z m n

n
z z( ) = + − 1 (2 − − )m

n

m
n

2 −2
=0

−1
−1

(4)

In (3) and (4), the subscripts denote the orders of the polynomials.

Popular CDF [19] biorthogonal WFBs are designed by factorizing a
LHBP. The LHBP in (3) of the order m4 − 2 has maximum m2 number
of VMs. Thus, the LHBP does not provide any freedom for the
optimization.

In this paper, our objective is to obtain some independent (free)
parameters that can be optimized to design the time–frequency
localized wavelet bases. In order to achieve some degrees of freedom,
we first define the modified LHBP polynomial by freeing f2 number of
zeros at z = −1 of the LHBP (3) as follows:

P z z z F z Q zˇ ( ) = (1 + ) ( ) ( )m
m f m f

f m4 −2
( − ) −1 2( − )

2 2 −2 (5)

P z z z R zˇ ( ) = (1 + ) ˇ ( )m
m f m f

m f4 −2
( − ) −1 2( − )

2 +2 −2 (6)

where

R z F z Q zˇ ( ) = ( ) ( )m f f m2 +2 −2 2 2 −2 (7)

and

∑F z a z z( ) = 1 + ( + )f
n

f

n
n n

2
=1

−

(8)

∑Q z b z z( ) = 1 + ( + )m
n

m

n
n n

2 −2
=1

−1
−

(9)

where an and bn are real coefficients. It is evident from (6) that the
modified LHBP has m f2( − ) VMs.

The polynomial F(z) is an arbitrary (symmetric) polynomial of
degree f2 , such that F (−1) ≠ 0 and f m∈ {1, 2, 3,…, − 1}. Eq. (7)
indicates that the remainder polynomial, R zˇ ( ), corresponding to the
modified LHBP (6) consists of two factors, F(z) and Q(z). The
polynomial F(z) in (8) contains free (independent) parameters. The
symmetric polynomial Q z( )m2 −2 in (9) of degree m2 − 2, contains m − 1
unknown coefficients bn. Subsequently, we shall refer the polynomial
F(z) as the free polynomial, as it gives some degrees of freedom in
designing the FB. Note, F(z) denotes the free polynomial, whereas F z( )0
represents the SLF. The parameter f represents number of degrees of
freedom. The case corresponding to f=0 turns the modified LHBP (6)
back to the LHBP (3), which has no freedom. The modified LHBP (6)
corresponding to maximum number of freedoms, f m= − 1, yields an
irregular FB, the one which does not have any VMs. Hence, the FB
cannot be regarded as a valid candidate of a wavelet FB. Thus for the
given order, m4 − 2, of the modified LHBP, the maximum possible
number of free parameters is m − 2 instead of m − 1 which in turn
excludes the possibility of irregular filters.

3. Problem solution

In this section, we demonstrate the proposed method to obtain
linear phase, two-channel FBs with prescribed number of VMs and
degrees of freedom. Since, we are designing linear phase filters, it is

more convenient to use the variable y = z z( + )
2

−1
. The change of variables

embeds the linear phase in the structure itself. The change of variables
reduces the orders of polynomials by a factor of half. Thus, the
modified LHBP in the variable y can be given as,

P y y F y Q y y R y( ) = (1 + ) ( ) ( ) = (1 + ) ( )∼ ∼∼∼
m

m f
f m

m f
m f2 −1

( − )
−1

( − )
+ −1 (10)

The PR condition on the polynomial P y( )∼
can be stated as

P y P yˇ ( ) + ˇ (− ) = 2; i.e., the coefficients of even powers of y are zero
except the constant term. It is evident that out of total m2 − 1 degrees
of freedom, m f− degrees of freedom are used to assign VMs
(regularity) and m − 1 degrees of freedom are exhausted in satisfying
PR (half-band) conditions. Hence, we are left with f degrees of freedom
that can be used to optimize wavelet filter coefficients. Besides, VMs
(regularity) can be traded for increased degrees of freedom. In the
proposed method, we need not factorize the product filter. Instead, we
a priori choose the lengths and numbers of VMs for both analysis asFig. 1. Two-channel FB.
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well as synthesis filters, and both are explicitly obtained in terms of the
free parameters. Let us consider zero phase odd-length analysis and
synthesis low pass filters H z( )0 and F z( )0 :

F z z z Q z( ) = (1 + ) ( )v v
m0

−1 2
2 −2 (11)

H z z z F z( ) = (1 + ) ( )m f v m f v
f0

( − − ) −1 2( − − )
2 (12)

The orders of the synthesis and analysis filters are chosen m v2( + − 1)
and m v2( − ), respectively. The respective numbers of VMs imposed on
the analysis and synthesis filters are m f v2( − − ) and v2 , where

v m∈ {1, 2, 3,…, − 2}. By substituting y = z z( + )
2

−1
and using

Chebyshev polynomials, in Eqs. (11) and (12), we obtain

F y y Q y( ) = (1 + ) ( )∼∼ v
m0 −1 (13)

H y y F y( ) = (1 + ) ( )͠ ∼m f v
f0

− − (14)

where the polynomials F y( )∼
f and Q∼m−1 are given by

∑F y y α y( ) = +∼
f

f

i

f

i
f i

=1

−

(15)

∑Q y y q y( ) = +∼
m

m

k

m

k
m k

−1
−1

=1

−1
−1−

(16)

The parameters α ∈i  are free (independent) parameters and qk are
unknown real coefficients. We obtain qk in terms of αi via solving the
determined system of m( − 1) linear equations that are obtained from
the half band (PR) conditions. Thus, we express both polynomials
H y( )͠ 0 and F y( )∼

0 in terms of the free parameters αi. The ALF and SLF
H z( )0 and F z( )0 can be obtained, explicitly in terms of free parameters,

by substituting back y = z z+
2

−1
in the parametric expressions of the

polynomials H y( )͠ 0 and F y( )∼
0 , respectively.

The aforementioned method illustrates the design of the odd-length
FB comprising the analysis and synthesis filters with the lengths

m v2( − ) and m v2( + − 1), respectively, where the filters have f degrees
of freedom. For the given value of m, we can obtain different odd-
length FBs by varying the value of v m∈ {1, 2, 3,…, − 2}. The filters
can have different numbers of free parameters f m∈ {1, 2, 3,…, − 2}.
For the given m, we obtain m m( − 1)( − 2)

2
distinct odd-length FBs. The

even-length FBs are also obtained from the re-factorization of designed
odd-length FBs. In the process of re-factorization, a factor z( + 1)p,
where p is an odd integer, is multiplied with (or divided from) the ALF

and the same factor is divided from (or multiplied with) the SLF. Since,
the PR condition remains intact during the process of re-factorization,
the relation between free parameter αi and unknown coefficients qk
also remains unaltered. For the given m, we design m m( + 1)( − 2)

2
distinct

even-length FBs. Thus, we can obtain total m m( − 2) different regular
FBs, for the given m. The regular FB refers to the one whose both ALF
and SLF have at least one zero at z = −1.

4. Construction of parametric FB families

The proposed method is fairly general to design almost any
biorthogonal FB. We illustrate the method via the following design
examples. First, we choose the desired value of m, which fixes the order
of the modified LHBP. Let us consider the modified LHBP with m=5
which fixes the order of the polynomial to m4 − 2 = 18:

P z z z F z Q zˇ ( ) = (1 + ) ( ) ( )f f
f18

(5− ) −1 2(5− )
2 8 (17)

Using Chebyshev polynomials and the change of variable,

y = z z( + )
2

−1
, in (17) provides the following expression of the LHBP in

the variable y:

P y y F y Q y( ) = (1 + ) ( ) ( )∼ ∼∼f
f9

5−
4 (18)

where the number of free parameters f ∈ {1, 2, 3}. Thus, we can design
three different families of FBs comprising fifteen distinct FBs with one,
two and three parameters (Table 1). We now design all three classes of
FBs having three, two and one free parameters, respectively. From this
point onwards, we shall consider all polynomials (filters) in terms of
variable y.

4.1. Construction of parametric FBs with 3 free parameters

By choosing f=3, we free six VMs of the LHBP. Thus the modified
LHBP has 4 VMs. The filter pair of lengths 9 and 11 can be designed by
assigning a pair of VMs to ALF as well as SLF. The ALF and SLF can be
expressed in terms of variable y as:

H y y F y( ) = (1 + ) ( )͠ ∼
0 3 (19)

F y y Q y( ) = (1 + ) ( )∼∼
0 4 (20)

where

F y y αy βy γ( ) = + + +∼
3

3 2 (21)

Table 1
Three classes of FBs with one, two and three free parameters for m=5.

Name Free parameters VMs Equations

9/11 α β γ, , (2,2) Refer Eqs. (25)–(28)
10/10 α β γ, , (3,1)
8/12 α β γ, , (1,3)

9/11 α β, (4,2) q α= − − 31
10/10 α β, (5,1) q α α β αβ α α α αβ α β αβ α β

Λ

= (96 + 18 + 48 + 144 + 96 + 24 + 19 + 81 + 3 + 35

+ 24)/
2

2 2 2 3 4 2 2 3 3

2
7/13 α β, (2,4) q α α β αβ α α α αβ α β αβ α β

Λ

= (−48 − 35 − 48 − 96 − 80 − 24 − 33 − 96 − 9 − 48

− 8)/
3

2 2 2 3 4 2 2 3 3

2
8/12 α β, (3,3) q α α β αβ α α α αβ α β αβ α β Λ= (8 + 24 + 24 + 24 + 24 + 8 + 24 + 48 + 8 + 24 )/4

2 2 2 3 4 2 2 3 3 2
6/14 α β, (1,5) where Λ α αβ α α αβ α β= 24 + 11 + 24 + 8 + 3 + 9 + 82 2 3 2 2

9/11 α (6,2) q α= − − 41
10/10 α (7,1) q α α α α Λ= (20 + 109 + 232 + 233 + 96)/2

4 3 2 3
7/13 α (4,4) q α α α α Λ= −(29 + 132 + 233 + 192 + 64)/3

4 3 2 3
6/14 α (3,5) q α α α α Λ= (16 + 64 + 96 + 64 + 16)/4

4 3 2 3
5/15 α (2,6) where Λ α α α= 5 + 20 + 29 + 163 3 2

4/16 α (1,7)
8/12 α (5,3)
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Q y y q y q y q y q( ) = + + + +∼
4

4
1

3
2

2
3 4 (22)

Note that the order of H y( )͠ 0 and F y( )∼
0 in (19) and (20) are 4 and 5,

respectively. Both H y( )͠ 0 and F y( )∼
0 , have a zero at y = −1, which in turn

implies that both H z( )0 and F z( )0 have a pair of zeros at z = −1. We
have four unknown coefficients q1, q2, q3 and q4 and three free

parameters α β γ{ , , }. The product filter P y( )∼
can be given by

P y y F y Q y( ) = (1 + ) ( ) ( )∼ ∼∼2
3 4 (23)

unknown coefficients q q q q{ , , , }1 2 3 4 are obtained in terms of free
parameters using the half band condition [23]. Applying half band
(PR) condition, the coefficients of y2, y4, y6 and y8 in the polynomial
P y( )∼

of (23) are equated to zero. This gives the following set of 4 linear
equations:

q α q q q α q q q β γ

q q γ q q α q q q

β q q q αq q q β γ q q q

+ + 2 = 0 + 2 + + (2 + + 1) + ( + 2) +

= 0 + 2 + (2 + + 1) + ( + 2 + )

+ ( + 2 + ) = 0 + ( + 2 ) + ( + 2 + )

= 0

1 1 2 3 1 2 1

3 4 1 2 2 3 4

1 2 3 4 3 4 2 3 4

(24)

On solving the set of equations in (24), we obtain

q α= −2 −1 (25)

q β α γβ α γ βα γβ α αβ α βγ α

αγ αβ α β γβα β α γβ γ β γ α

γα α α Λ

= (−8 + 6 − 2 + 6 − 10 − − 2 − 2 − 8

+ 16 − 6 − 16 + 8 − 6 + 2 + + 2

+ 10 − 10 − 4 )/

2
2 2 3 2 3 2 2

2 2 2 2 2

2 3 4
1 (26)

q γ γ α γ βα γ β γ γα α βγ γβα γβ α

αγ γ γβ γβ α α βα α α β

β α αβ αβ β α Λ

= (− − 4 + − 4 − 2 − 8 + 4 − 8 + 4

− 12 − 4 − 8 − 4 + 2 + 4 + 8 + 2 + 12

+ 10 + 4 + 4 + 8 )/

3
3 2 2 2 2 2 2 2

2 4 3 3 2 2

2 2 3 2
1 (27)

q γ β γβ γβ αβ γ α αβ β α γα γ

βα αγ α βγ β α α β γ βα γβ α γ

γ Λ

= (4 + 4 + 2 − 2 + 4 − 2 − 4 + 2 + 4

− 2 + 4 − 4 − 4 − 4 − 2 − 4 + 2

+ 2 )/

4
2 2 2 3 2 2 2 2

3 2 2 2 2 2

3
1 (28)

where

Λ αγ αβ γ α β α γ β α α α γβα γβ= 4 − 4 + 4 − 4 − 2 + − 2 − 2 − 4 − + 21
2 2 2 3 2

Thus, we have both polynomials H y( )͠ 0 and F y( )∼
0 in terms of free

parameters α β γ( , , ) (Table 2). On substituting back, y = z z+
2

−1
in these

polynomials, we get the desired parameterized filters.
Important remarks: Before exemplifying the design of FBs with

two free parameters, the salient and distinct features of the aforemen-
tioned parametric construction are highlighted as follows:

(i) By choosing different values of free parameters, one can obtain
different 9/11 FB. Interestingly, we have derived the original
CDF-9/11 [19] FB by the following choice of free parameters
α β γ{ = −2.10013469, = −0.5894783, = 2.5106546}.

(ii) Tay [24] attempted to design the 9/11 parameterized FB. But, the

author did not present free parameter based expressions of the
analysis and synthesis filters. In this work, we have presented the
parametrized expressions of the filters for the 9/11 and 10/10
FBs.

(iii) Recently Murugesan and Tay [25] also designed a 9/11 FB, with
two free parameters using a restrictive design technique in which
the VMs can be reduced only in one filter (either ALF or SLF) but
not in both. The important feature of the proposed design is that
the reduction of VMs is permissible for both filters, simulta-
neously. Hence, the proposed technique provides more freedom
and flexibility than the technique of Murugesan and Tay [25]. Also
the reduction of VMs occurs for both filters unlike the method of
Murugesan and Tay [25]. The original CDF-9/11 FB has ALF and
SLF with 4 and 6 VMs. In the above design, we have reduced 2
and 4 VMs from ALF and SLF, respectively. Thus we obtained
three degrees of freedom.

4.2. Construction of parametric FBs with two free parameters

By setting f=2, four VMs from the LHBP has been reduced. Thus,
the modified LHBP has now 6 VMs. The filter pair of lengths 7 and 13
can be designed by assigning 2 and 4 VMs to ALF and SLF,
respectively. The modified ALF and SLF can be expressed as

H y y y αy β( ) = (1 + )( + + )͠ 0 2 (29)

F y y y q y q y q y q( ) = (1 + ) ( + + + + )∼
0

2 4
1

3
2

2
3 4 (30)

An alternative filter pair of lengths 9 and 11, with 4 and 2 VMs for
ALF and SLF, respectively can be expressed as follows:

H y y y αy β( ) = (1 + ) ( + + )͠ 0 2 2 (31)

F y y y q y q y q y q( ) = (1 + )( + + + + )∼
0

4
1

3
2

2
3 4 (32)

Similar to the case of 3 free parameters, we formulate a determined
system of 4 linear equations that are obtained from the PR (half band)
condition. By solving the set of equations, we represent coefficients
q q q q{ , , , }1 2 3 4 in terms of two free parameters α β{ , } as shown in
Table 1.

4.3. Construction of parametric FBs with one free parameter

The choice f=1 relaxes two VMs of the LHBP. Thus, the modified
LHBP has now 8 VMs. By assigning 2 and 6 VMs to ALF and SLF,
respectively, the filter pair of lengths 5 and 15 can be defined as
follows:

H y y y α( ) = (1 + )( + )͠ 0 (33)

F y y y q y q y q y q( ) = (1 + ) ( + + + + )∼
0

3 4
1

3
2

2
3 4 (34)

In case of one free parametrized construction, there are two more
alternatives for defining the filters as follows. By assigning 4 VMs each
to ALF and SLF, respectively, a filter pair of lengths 7 and 13 can be
designed as

H y y y α( ) = (1 + ) ( + )͠ 0 2 (35)

F y y y q y q y q y q( ) = (1 + ) ( + + + + )∼
0

2 4
1

3
2

2
3 4 (36)

We assign 6 and 2 VMs to ALF and SLF, respectively, in this case
the filter pair of lengths 9 and 11 can be designed as follows:

H y y y α( ) = (1 + ) ( + )͠ 0 3 (37)

F y y y q y q y q y q( ) = (1 + )( + + + + )∼
0

4
1

3
2

2
3 4 (38)

The coefficients q q q q{ , , , }1 2 3 4 can be obtained in terms of the free
parameter α, as given in Table 1, by solving a set of 4 linear equations
in similar manner as that of three and two parameters cases.

Table 2
Filter coefficients: 9/11 FB with 3 free parameters.

n h n( )0 f n( )0

0 γ+ + +α β
2 2

3
8

q q+ + + +q q3
8 1

2
2

3
2 4

3
8

± 1 α + + +β γ3
8 2 2

3
8

q q+ + + +q q3
8 1

3
8 2

3
2

4
2

5
16

± 2 + +α β
4 4

1
4

+ + +q q q1
4

2
4

3
4

1
4

± 3 +α
8

1
8

+ +q q1
8

2
8

5
32

± 4 1
16

+q1
16

1
16

± 5 1
32
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Hence, with m=5, we have designed three different families of FBs
with one, two and three free parameters. We have thus designed total
15 different regular wavelet FBs, out of which 6 FBs have an odd length
and the remaining 9 FBs have an even-length. The details about these
FB designs are given in Table 1. In the subsequent section, we present a
method to obtain JTFL wavelet bases via optimizing the free para-
meters of the designed filter pairs.

5. Time–frequency localization and discrete wavelet bases

The uncertainty principle prevents arbitrary localization of a signal
in time and frequency domains, simultaneously. Ishii and Furukawa
[36] have proposed a variance based time–frequency localization
measure for sequences in l ( )2  . Let h(n) be a discrete-time real valued
sequence in l ( )2  with h = 12

2 . Let H e( )jω be its discrete-time Fourier
transform (DTFT). The time variance σn

2 of the sequence, along with
its time mean n0, can be given as follows:

∑ ∑n n h n σ n n h n= ( ) = ( − ) ( )
n

n
n

0
∈

2 2

∈
0

2 2

  (39)

For a low-pass sequence h(n), frequency mean ω0 and frequency
variance σω

2 can be given by

∫ω σ
π

ω ω H ω dω= 0 = 1
2

( − ) ( )ω
π

π
0

2

−
0

2 2
(40)

Let Δh denote the product of time and frequency variances of the
sequence h(n). The Δh is referred to as time–frequency product (TFP)
of the sequence h(n). The uncertainty principle imposes a lower bound
on the TFP. The following inequality represents the lower bound [37]:

Δ σ σ H π= ≥ (1 − ( ) )
4h n ω

2 2
2

(41)

For a band-pass sequence h(n), one-sided frequency mean ω0 and
frequency variance σω

2 can be given by [37]:

∫ ∫ω
π

ω H ω dωσ
π

ω ω H ω dω= 1 ( ) = 1 ( − ) ( )
π

ω

π
0

0
2 2

0
0

2 2
(42)

Following (39) and (42), TFP of a band-pass sequence is lower
bounded as given by the following inequality [37]:

Δ σ σ μ= ≥ (1 − )
4h n ω

2 2
2

(43)

where

⎛
⎝⎜

⎞
⎠⎟μ ω

π
H ω

π
H π= (0) + 1 − ( )0 2 0 2

For a high-pass sequence h(n), frequency mean ω0 and frequency
variance σω

2 can be given by [37]

∫ω πσ
π

ω ω H ω dω= = 1
2

( − ) ( )ω
π

π
0

2

−
0

2 2
(44)

Thus using (39) and (44) TFP for a high-pass sequence can be given
by [37]

Δ σ σ H= ≥ (1 − (0) )
4h n ω

2 2
2

(45)

For all the three cases corresponding to low-pass, high-pass and
band-pass sequences, the TFP of a sequence in l ( )2  is also lower
bounded similar to the case of continuous-time functions in L ( )2  . This
happens if the spectrum of the sequence vanishes at ω π= and/or
ω = 0. In our designs, both the ALF and SLF have at least one zero at
ω π= . Also, both the analysis and synthesis high-pass filters have at
least one zero at ω = 0 and all the band pass discrete wavelet
sequences, which are generated through iterations of the ALF and
SLF have at least one zero at ω π= and one at ω = 0. Therefore, the
TFP of all filters and sequences designed by us is lower bounded by
0.25, which can be expressed as follows:

Δ σ σ= ≥h n ω
2 2 1

4 (46)

We consider J number of iterations of the typical two channel
biorthogonal FB (Fig. 1) to decompose a signal into J + 1 subbands.
Figs. 2(a) and (b) show the tree-structured analysis and synthesis FBs,
respectively, for the case J=4. Using noble identities [2], the J-level
tree-structured iterated FB can be transformed into an equivalent
parallel-structured FB consisting of J + 1 parallel filters, as shown in
Fig. 3. Note that, out of the J + 1 parallel filter branches, the topmost
branch is a low pass filter; the bottommost branch is a high pass filter
and the others are band pass filters. In our optimization problem, we
minimize TFP not only of the low pass filter, but also of all band pass
filters and the high pass filters of the J + 1 parallel filters.

The J + 1 analysis filters of the parallel-structured FB can be given
by the following expressions:

∏

∏

H z H z H z H z H z

i JH z H z

( ) = ( ) ( ) = ( ) ( ),

= 2, 3,…, ( ) = ( )

i

k

i

J

k

J

1
1

1 1 1
2

=0

−2

0
2

0
=0

−1

0
2

i k

k

−1

(47)

The J + 1 synthesis filters can be represented as follows:

∏

∏

F z F z F z F z F z

i JF z F z

( ) = ( ) ( ) = ( ) ( ),

= 2, 3,…, ( ) = ( )

i

k

i

J

k

J

1
1

1 1 1
2

=0

−2

0
2

0
=0

−1

0
2

i k

k

−1

(48)

Fig. 2. Tree-structured FBs.

Fig. 3. Parallel-structured FBs.
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Let h n( )i
1 , i J= 1. …, , and h J

0 be the time domain representations
(impulse response sequences) of the J + 1 parallel filters of the parallel-
structured analysis FB. These sequences are subsequently referred to as
wavelet vectors or wavelet sequences. The set of these vectors is called
discrete-time analysis wavelet basis, and is denoted by Ψ. Similarly, let
f n( )i
1 , i J= 1. …, , and f J

0 represent impulse response sequences corre-
sponding to the J + 1 parallel filters of the parallel-structured synthesis
FB. These sequences are referred to as synthesis wavelet vectors. The
set of the sequences forms the discrete-time synthesis wavelet basis
which is denoted by Ψ͠ .

We now extend time–frequency localization properties of an
individual sequence to the collective localization properties of discrete
wavelet bases defined above. The uncertainty principle, therefore, can
also be extended to the discrete-time analysis and synthesis bases. Let
η h h h h= { , , , … }N1 2 3 be a basis that contains N discrete wavelet vectors,
hk. For the basis η, we now introduce TFP which is given by,

∑Δ w Δ=η
k

N

k h
=1

k
(49)

where wk are the weights such that w0 ≤ ≤ 1k and w∑ = 1k
N

k=1 . It
follows from (49) that Δη is a weighted average of the TFPs of the basis
vectors of the basis η. For the sequence hk, following (46), we have the
inequality Δ σ σ= ≥h n ω

2 2 1
4k . This leads to the following uncertainty

relation for the basis η:

∑Δ
N

Δ= 1 ≥ 1
4η

k

N

h
=1

k
(50)

Hence, the TFP of discrete-time analysis and synthesis wavelet
bases is also lower bounded by 0.25, similar to the case of continuous-
time bases and functions.

6. Optimization method

In this paper, our objective is to obtain time–frequency localized
discrete-time wavelet bases. For this we minimize the following
objective function:

Φ ρΔ ρ Δ ρ= + (1 − ) , ∈ [0, 1]Ψ Ψ͠ (51)

where ΔΨ and ΔΨ͠ are TFPs of the discrete-time analysis and synthesis
wavelet basses, respectively. ρ is a trade-off factor for controlling
localizations of analysis and synthesis bases. In this work, the following
three different cases corresponding to ρ = 1, 0 and 0.5 have been
considered to obtain time–frequency optimized wavelet bases:

1. Optimal analysis wavelet basis: In the first case corresponding to
ρ = 1, we minimize the TFP of analysis wavelet basis for J levels of
iterations. The objective function can be given as follows:

Φ Δ w Δ w Δ w Δ w Δ= = + +⋯+ +Ψ h h J h J h1 2 +1J J
1
1

1
2

1 0 (52)

where Δ Δ Δ Δ, ,…, ,h h h hJ J
1
1

1
2

1 0
are TFPs of the basis vectors of the analysis

wavelet basis Ψ.
2. Optimal synthesis wavelet basis: In the second case corresponding

to ρ = 0, we minimize the TFP of the discrete-time synthesis wavelet
basis. The objective function can be expressed as follows:

Φ Δ w Δ w Δ w Δ w Δ= = + +⋯+ +Ψ f f J f J f1 2 +1͠ J J
1
1

1
2

1 0 (53)

where Δ Δ Δ Δ, ,…, ,f f f fJ J
1
1

1
2

1 0
represent TFPs of basis vectors of the

synthesis basis, Ψ͠ .
3. Jointly optimal analysis and synthesis wavelet bases: In the third

case corresponding to ρ = 0.5, we minimize the TFP of the analysis
and synthesis wavelet bases jointly. The objective function is given
by following expression:

Φ Δ Δ Δ= = { + }Ψ Ψ Ψ Ψ+
1
2͠ ͠ (54)

Unconstrained optimization problem: Conditions of PR and VMs
have been imposed structurally in the parametric construction of FBs.
Thus, the design of time–frequency localized wavelet bases corre-
sponding to each of the three cases can be expressed by the following
unconstrained minimization problem:

h n f n Φ α( *( ), * ( )) = argmin( ( ))
α

i0 0
{ }i (55)

where Φ represents one of the following: ΔΨ͠ , ΔΨ , ΔΨ Ψ+ ͠ . α{ }i is the set of

Table 3
TFPs of odd-length optimal wavelet bases.

FB Optimal free parameter values ΔΨ ΔΨ͠ ΔΨ Ψ+ ͠

A2-11/9 −5.7445, 6.7078 0.3807 0.5401 0.4604
B2-11/9 −4.8159, 6.7914 1.5283 0.3614 0.9449
C2-11/9 −11.3907, 15.8622 0.4023 0.4512 0.4267
A3-11/9 −2.7975, −13.7852, 38.6584 0.3281 1.6678 0.9979
B3-11/9 −2.5297, 0.9980, 3.1318 1.2100 0.3409 0.7754
C3-11/9 −8.0496, 3.5293, 10.7211 0.4106 0.4351 0.4229
CDF-11/9 [19] – 0.4350 0.7071 0.5683
S-11/9 [10] – 49.9783 0.5738 25.2760

The minimum value for each objective function is marked in bold.

Table 4
TFPs of even-length optimal wavelet bases.

FB Optimal free parameter values ΔΨ ΔΨ͠ ΔΨ Ψ+ ͠

A2-12/8 4.7890, −10.2297 0.3376 0.6793 0.5085
B2-12/8 −0.3677, −2.4178 4.7731 0.4091 2.5911
C2-12/8 1.2007, −4.8418 0.3688 0.5022 0.4355
A3-12/8 10.5080, −6.2056, −34.6363 0.3118 2.4574 1.3846
B3-12/8 4.50225, −8.4022, −10.3520 0.8777 0.4034 0.6405
C3-12/8 2.5940, −3.8140,−4.8276 0.3707 0.4670 0.4189
CDF-12/8 [19] – 3.7469 0.4448 2.0959

The minimum value for each objective function is marked in bold.

Fig. 4. Frequency responses of filter pair H0, H1 of optimal FBs C3-11/9, C3-12/8 and

CDF-11/9.
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free parameters and h n*( )0 and f n* ( )0 represent optimal ALF and SLF
that yields optimal wavelet bases. We thereby get different h n*( )0 and
f n* ( )0 by following different optimization cases. Having obtained the
optimal low-pass filters, optimal discrete-time analysis and synthesis
wavelet bases can be generated as explained in Section 5. Note, the FBs
are regular only over a certain range of values of free parameters, α{ }i .
Therefore, we first find the range of free parameter values over which
the FBs obtained are regular wavelet FBs. Thus, we restrict the

optimization process to search the solution in this range only.
Further to ensure that the optimization process does not provide a
local minimum, we run the optimization algorithm with different initial
values of free parameters. This helps the algorithm to converge to at
least a good minimum (near optimal) solution, if not the global
solution. Thus, the strategy gives better solution compared to the case
where the initial value is arbitrarily chosen. The entire optimization
process can be explained by the following step by step procedure:

Fig. 5. Wavelet basis sequences of discrete-time analysis and synthesis bases of optimal FB C3-11/9.
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1. Fix the lengths, VMs and number of free parameters of the filter pair.
Also, fix the number of levels of decomposition J.

2. Find parametric expressions of H z( )0 and F z( )0 using the proposed
parametric technique in Section 4.

3. Find the region of free parameter values where the FBs are regular.
The cascade algorithm converges in this region.

4. Select initial values for free parameters from the above mentioned
range.

5. Perform the optimization using MATLAB optimization toolbox's
fmincon solver with objective function being Φ in (55).

6. Check whether the value of the objective function returned by the
solver is close to the lower bound 0.25. Else, go to step 4 and redo
the optimization problem with a different initial value. Repeat the
process for different initial values until the value of cost function
converges close to 0.25 or the value of objective function does not
vary with initial values.

Fig. 6. Wavelet basis sequences of discrete-time analysis and synthesis bases of optimal FB C3-12/8.
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7. Generate the optimal filters using the parametric expression of the
filters for the free parameter values corresponding to the minimum
value of the objective function. Construct discrete-time wavelet
bases from the optimal filters.

8. Repeat steps 1–7 for all the three optimization cases.

Having obtained optimal FBs, their performance has been evaluated in
image compression application. Standard 8 bits per pixel (bpp)
grayscale images like Lena, fingerprint [38], as well as sketch [39],
straw [40], and images of various shapes [6] are used for the
evaluation. For the image compression and performance analysis, we
have used the following strategy: (i) Symmetrically extend the image,
and apply four level discrete wavelet transform (DWT). (ii) Encode the
DWT coefficients of the symmetrically extended image using set
partitioning in hierarchical trees (SPIHT) [41] for a range of bit rate:
0.1–1 bpp. Decode the encoded coefficients and apply four level inverse
DWT to reconstruct the image. Calculate peak signal to noise ratio
(PSNR) which serves as an objective measure for the performance
evaluation. Also, calculate structural similarity index (SSIM) [42] for
the image reconstructed at bit rate 1 bpp. The SSIM indicates the
perceptual quality of reconstructed images.

Notably, the proposed method is general in the sense that any
number of iterations can be applied. We have chosen four levels of
iterations for illustration. The optimal choice of the number of levels
depends on the application at hand and the signal under consideration.
Chang and Kuo [43] found that for the images such as Lena and some
textured images, 4-level wavelet decomposition is appropriate. The
authors conjectured that for the texture analysis, full decomposition of
images is unnecessary and is computationally expensive. Further, in
many practical applications, including the analysis of biomedical
signals like an electroencephalogram (EEG), four levels of iterations
have been found optimal [44,45]. Thus we apply four levels of
iterations, even though the proposed method being general.

7. Results and discussions

In this section, we present certain design examples to demonstrate
the effectiveness of the proposed parametrization technique and
optimization method. It is followed by the performance evaluation of
the designed FBs in image compression application.

We design FBs with one, two and three free parameters for the case
corresponding to m=5 as discussed in Section 4. The parameters are
then optimized to obtain JTFL minimized FBs. We apply four levels of
iterations on the designed optimal FB which yields the discrete wavelet
basis comprising five basis vectors (iterated filters). We compare the
time–frequency performance of the obtained optimal FBs against
equivalent CDF FBs [19] and equivalent time–frequency localized
FBs designed by Sharma et al. [10].

To demonstrate the time–frequency localization properties of
wavelet bases designed using the proposed technique, we minimize
aforementioned objective functions for the following FBs: 11/9 FBs
with three and two free parameters and 12/8 FBs with three and two

free parameters. The following nomenclature is used for our JTFL
optimal FBs:

{filter type} − {length of analysis LPF}/

{length of synthesis LPF}
{# of free parameters}

where the filter-type can be either A or B or C corresponding to the
optimality criterion, ΔΨ or ΔΨ͠ or ΔΨ Ψ+ ͠ , respectively. The subscript # of
free parameters denote the number of freedoms available for the
optimization. For instance, the notation A3-11/9 indicates a FB having
analysis and synthesis filters of lengths 11 and 9, respectively. The
filters have three free parameters, which are optimized to obtain the
minimum value of the TFP of the analysis wavelet basis, ΔΨ . We have
obtained the following optimal odd-length FBs: A2-11/9, B2-11/9,
C2-11/9, A3-11/9, B3-11/9, and C3-11/9. Similarly, we obtained the
following even-length FBs: A2-12/8, B2-12/8, C2-12/8, A3-12/8, B3-12/
8, and C3-12/8.

7.1. Time–frequency performance

Tables 3 and 4 show the time–frequency localization properties of
the analysis and synthesis discrete wavelet bases along with the values
of free parameters corresponding to the respective optimal FBs. In the
tables, we also mention TFPs of the wavelet bases of equivalent
biorthogonal CDF FB [19] and equivalent time–frequency localized
S-11/9 [10] FB. For a particular number of free parameters, an optimal
FB generated via optimization of a particular objective function has the
least value for the respective optimality criterion compared to the other
FBs in the set. Thus for odd-length FBs, A3-11/9 has the minimum
TFP, ΔΨ for the analysis wavelet basis, B3-11/9 has the least TFP value,
ΔΨ͠ for the synthesis wavelet basis and C3-11/9 has the least TFP value,
ΔΨ Ψ+ ͠ for the combination of the analysis and synthesis wavelet bases.
From Table 3, it is clear that the analysis wavelet bases of the FBs
A3-11/9 and A2-11/9 have better JTFL than the analysis wavelet bases
of CDF-11/9 as well as S-11/9 FB. Similarly, the synthesis wavelet
bases of the FBs, B3-11/9 and B2-11/9 are better JTFL than the
synthesis wavelet bases of CDF-11/9 as well as S-11/9 FB. Further, the
joint (average) TFP of the analysis and synthesis bases of the FBs
C3-11/9 and C2-11/9 is lesser than that of CDF-11/9 and S-11/9 FB. It
can also be observed that, with the increase in the number of free
parameters, the TFPs of our design examples become lesser. Similarly
for the even-length case, A3-12/8 has the least ΔΨ , B3-12/8 has the least
ΔΨ͠ , and C3-12/8 has the least ΔΨ Ψ+ ͠ . Further, from Table 4, it is evident
that CDF-12/8 FB has higher TFP values compared to our even-length
FBs. Fig. 4 shows frequency responses of the optimal FBs, C3-11/9,
C3-12/8 and CDF-11/9 FB. Figs. 5 and 6 depict all basis sequences
(iterated filters) of wavelet basis sequences analysis and synthesis
wavelet bases corresponding to the optimal FBs C3-11/9 and C3-12/8
obtained by us. The TFP of each basis sequence has been mentioned in
the top left hand corner of the respective figure window.

The amount of time taken by a design method to yield optimal filter
coefficients is also an important consideration. To get an estimate of
the time complexity of the proposed method to obtain optimal FBs and
to compare it with the other optimal FB design methods [10,32,46,47],
we measure the time taken by different methods to generate optimal
filter coefficients (Table 5). We compare our optimal FBs with other
optimal FBs, which are obtained by employing four different direct
time-domain design approaches given by Sharma et al. [10,32], Patil
et al. [46], and Horng and Wilson [47]. A workstation having Intel
2 GHz CORE i3 processor is used to measure the computation times.
From Table 5, it is clear that the optimal FBs designed by us take lesser
computation time to generate all filter coefficients compared to other
optimal FBs [10,32,46,47]. Our odd-length optimal FB A2-11/9 takes
the minimum time of 0.0204 s to generate all 20 filter coefficients. The
optimal FB-12/8 designed by Horng and Wilson [47] takes the highest
computation time of 1.9799 s to obtain the filter coefficients.

Table 5
Time for computing optimal filters (in seconds).

Odd-length FB Computation time Even-length FB Computation time

A2-11/9 0.0204 A2-12/8 0.0240
B2-11/9 0.0222 B2-12/8 0.0209
C2-11/9 0.0224 C2-12/8 0.0209
A3-11/9 0.0303 A3-12/8 0.0226
B3-11/9 0.0225 B3-12/8 0.0235
C3-11/9 0.0230 C3-12/8 0.0218
S-11/9 [10] 0.0873 FB-12/8 [32] 0.0871
FB-11/9 [46] 0.0482 FB-12/8 [47] 1.9799

The minimum time for computing optimal filters is marked in bold.
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Hence, the parametric design technique leads to the faster im-
plementation of the optimal FBs. This is because, in the proposed
parametric design technique, the optimal ALF and SLF are obtained
simultaneously. In the complementary techniques [10,32,46,47], first
one finds optimal ALF, followed by the design of optimal SLF. Hence,
these techniques are two-step techniques. Whereas the optimal design
employing the parametric approach is one- step technique wherein
both ALF and SLF are obtained simultaneously. Moreover, irrespective

of filter lengths, the number of optimization parameters is fixed in the
parametrization technique. The optimization parameters are free
variables which are chosen a priori to the design of FBs. The number
of free variables remains lesser than the lengths of filters because of PR
and VM constraints imposed on the FB. On the other hand, in the case
of direct time-domain optimal design techniques [10,32,46,47] the
optimal filter coefficients are obtained directly. The optimization
variables are the filter coefficients. Hence, in these direct design

Fig. 7. Image compression performance: rate distortion plots.
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techniques, the time taken by the optimization algorithms to obtain
optimal filter coefficients increases with the lengths of filters. It leads to
the lesser execution time for the design of optimal filters using the
proposed parametric approach. CDF [19] FBs do not provide any
freedom for the optimization and are therefore not included in the
comparison.

7.2. Image compression performance and comparison

For evaluating the performance of the JTFL optimized FBs in image
compression application, we have used the following optimal FBs
designed by us: A3-11/9, B3-11/9, C3-11/9 with three parameters;
A2-11/9, B2-11/9, C2-11/9 with two free parameters and A1-13/7,
B1-13/7, C1-13/7 with one free parameter. The SPIHT algorithm has
been applied on various test images at different bit rates. The rate
distortion analysis has been performed in PSNR (in dB) for bit rates
that range from 0.1 to 1 bpp. Fig. 7 compares the performance of our
best performing FB, for the respective image, against CDF-11/9, CDF-
9/7 and time–frequency localized S-11/9 FB designed by Sharma et al.
[10]. Table 6 contains the structural similarity index evaluated at the
bit rate of 1 bpp for the optimal FBs designed by us as well as CDF-11/
9, S-11/9 and CDF-9/7.

Though, we have not found an optimal FB that globally outperforms
all other FBs for all images, for every test images, one of our optimal
FBs performs better compared to CDF-11/9, CDF-9/7, and previously
designed time–frequency localized FBs [10]. From the rate-distortion
performance plots as shown in Fig. 7(a)–(f), it is evident that for every
given image, it is always possible to find an optimal FB designed by us,
which has a superior rate-distortion performance than the CDF as well
as previously designed time–frequency localized FBs. In particular, the
optimal FB B2-11/9 outperforms all other FBs for test image sketch. It
gives an average gain of 4 dB in PSNR over S-11/9. It outperforms
CDF-11/9 by an average PSNR of 0.15 dB. For Lena image, B3-11/9
has the best performance. It gives average PSNR gains of 0.83 dB and
3.96 dB over CDF-11/9 and S-11/9, respectively. Similarly, we get
B1-13/7, A1-13/7, B2-11/9, and C3-11/9 FBs as the best performing FBs
for finger-print, straw, shapes, and shapes-zoomed images, respec-
tively. The above optimal FBs give the following PSNR gains over S-11/
9 FB for the respective test image: 4.01 dB, 4.01 dB, 4.75 dB, and
3.31 dB, respectively. These optimal FBs outperform CDF-11/9 FB by
0.28 dB, 0.48 dB, 0.73 dB, and 0.93 dB, for the respective images. For
finger-print, shapes, and shapes-zoomed images, the performance of
our optimal FBs is significantly better than the CDF-9/7 (used in
JPEG-2000 image compression standard), with average PSNR gains of
0.10 dB, 0.18 dB, and 0.35 dB, respectively. In the sketch, Lena, and
straw images, our FBs show competitive performance against CDF-9/7

FB, with slightly better PSNR. These optimal FBs outperform CDF-9/7
FB for the above test images by 0.04 dB, 0.06 dB, and 0.01 dB. The
image quality of reconstructed images perceived by human visual
systems need not necessarily be well correlated with their rate-
distortion performance. Therefore, we have also calculated SSIM,
which serves as a perceptual measure [42] at the bit rate 1 bpp, for
all images. As per Table 6, for the sketch, Lena, fingerprint, straw and
shapes, the optimal FBs; B2-11/9, B3-11/9, B1-13/7, A1-13/7 and
B2-11/9 have the highest values of SSIM, respectively. For the image
zoomed-shape the SSIM corresponding to both CDF-9/7 FB and our
optimal C1-13/7 FB is the same with highest value. Thus in case of
SSIM also, our optimal FBs outperform equivalent CDF and time–
frequency localized FBs [10].

Though, SSIM is an indicator of perceptual measure, only visual
inspection can be used to evaluate certain features of reconstructed
images such as texture and edges. Fig. 8(a)–(d) compare the perceptual
quality of reconstructed images at bit rate of 0.3 bpp. The images
reconstructed using the FBs CDF-11/9, S-11/9, and our best perform-
ing optimal FB for the respective image are compared. The original
image is shown in each figure as a reference. When the reconstructed
images are zoomed for close examination, it is observed that CDF-11/9
FB introduces artifact in most of the images. It is visible on the face in
the sketch image. Similarly for Lena, the artifacts are stronger on the
face, edge of the hat and corner of the mirror. For the shapes image, the
artifacts can be clearly seen at the edges for all shapes. For the shapes-
zoomed image, artifacts are present at the edges of the square at the
center of circle, and also close to the boundary of the circle. For most of
the reconstructed images, S-11/9 FB have the strongest visible artifacts
and information loss. However, for the shapes-zoomed image case, the
edges of the square at center of its reconstructed image are compara-
tively clearer. But, strong artifacts are present outside the square
boundary. In most of the cases, images reconstructed using our best
design examples for the respective images have the least artifacts. Our
reconstructed images have clearer edges, and also have lesser visual
information loss compared to the other reconstructed images. Textures
are preserved better by our best design examples compared to the other
FBs.

To get an estimate of the time complexity of the proposed wavelet
bases in the image compression application, we measure the time for
analyzing each test image using the optimal FBs. Table 7 shows time
taken for compressing each of the six test images corresponding to all
the FBs considered by us. The compression time includes the time for
generating wavelet coefficients of the image, the time taken by SPIHT
algorithm for coding as well as decoding the coefficients, and the time
for reconstructing the image from decoded wavelet coefficients.

8. Conclusions

We have proposed a general and very simple framework for
parametric design of linear phase biorthogonal FBs of arbitrary lengths
with the desired degrees of freedom and VMs. The proposed para-
metrization technique overcomes the restrictions on the filters that are
imposed by the existing design techniques. The filter coefficients have
been explicitly expressed using free parameters. The optimal free
parameters can be searched to obtain minimum or maximum value
of the desired objective function. We optimized these free parameters
to obtain joint time–frequency localized discrete-time wavelet bases.
The designed time–frequency optimized wavelet bases have noticeable
improvement in TFP values over the bases generated using equivalent
biorthogonal CDF FBs. The performance of the optimal FBs is
evaluated in image compression application and compared with CDF
biorthogonal FBs. The performance of the designed optimal FBs has
been found better, both objectively and subjectively. Our proposed FBs
outperform another class of previously designed time–frequency
localized biorthogonal FBs [10] both objectively and subjectively.
Thus, the time–frequency optimized biorthogonal linear phase FBs

Table 6
Image compression performance: SSIM at bit rate 1 bpp.

FB Image

Sketch Lena Finger print Straw Shapes Shapes zoomed

CDF-11/9 0.969 0.9375 0.9686 0.9386 0.9747 0.9992
CDF-9/7 0.9737 0.9426 0.9711 0.9418 0.9823 0.9995
S-11/9 0.957 0.9073 0.9561 0.8625 0.9696 0.9987
A1-13/7 0.9737 0.9427 0.971 0.9419 0.9822 0.9995
B1-13/7 0.9731 0.9419 0.9713 0.941 0.9812 0.9994
C1-13/7 0.9737 0.9426 0.9711 0.9419 0.9823 0.9995
A2-11/9 0.9662 0.9324 0.9614 0.9297 0.9716 0.9992
B2-11/9 0.9746 0.943 0.9713 0.9354 0.9837 0.9995
C2-11/9 0.9705 0.94 0.9677 0.9386 0.9789 0.9993
A3-11/9 0.9589 0.9196 0.9394 0.9006 0.976 0.9992
B3-11/9 0.9737 0.9428 0.972 0.9377 0.9818 0.9994
C3-11/9 0.9695 0.9393 0.9674 0.9389 0.9773 0.9994

The highest SSIM value for each image is marked in bold.
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designed by us appear promising in image compression. The proposed
JTFL optimized biorthogonal wavelet bases can be regarded as a set of
more compact atoms for representation of a signal in joint time–
frequency domain. It is demonstrated that the proposed class of FBs
perform better than the other classes of biorthogonal FBs in an image
compression application. It is expected that the proposed class may
perform better in some applications such as feature extraction, pulse
shaping in multi-carrier communication systems, analysis and discri-

mination of various classes of EEG and other biomedical signals where
simultaneous localization in time and frequency is essential.
Performance evaluation of the time–frequency localized discrete
wavelet bases in these applications would be of great interest.
Further, the popular wavelet families such as CDF biorthogonal
WFBs [19] and Daubechies orthogonal WFBs [17] have irrational filter
coefficients. Rounding or quantization of such coefficients during
hardware implementation may lead to serious problems including the

Fig. 8. Images reconstructed, using various FBs, from level-4 DWT decomposition with bit rate 0.3 bpp.
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loss of PR and VM conditions. The proposed technique which has PR
and VM conditions imposed in the structure promises the design for
rational filter coefficients, ensuring better hardware implementation.
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Table 7
Total time (in seconds) elapsed in wavelet decomposition, SPIHT coding as well as
decoding and image reconstruction at bit rate 0.3 bpp.

FB Image

Sketch Lena Finger print Straw Shapes Shapes
zoomed

CDF-11/9 27.3388 2.0731 2.5859 39.3587 2.2711 1.9242
CDF-9/7 22.7551 2.0285 2.132 44.8586 2.0916 1.7394
S-11/9 20.1229 2.0818 1.9339 28.6691 2.083 1.7265
A1-13/7 24.0651 2.0192 2.1638 39.3757 2.1407 1.7748
B1-13/7 22.4085 2.1259 2.5647 43.1094 2.0776 1.73
C1-13/7 22.2686 2.1056 2.1446 47.4944 2.0846 1.7782
A2-11/9 30.4894 2.122 2.5523 42.3644 2.1577 2.0108
B2-11/9 23.2415 2.1938 2.2934 33.2056 2.1633 1.7988
C2-11/9 23.3828 2.199 2.5524 41.4504 2.1619 1.7992
A3-11/9 22.5304 2.1602 2.4635 43.7242 2.3217 1.7197
B3-11/9 22.9789 2.1392 2.1972 31.7841 2.2079 1.7874
C3-11/9 23.7799 2.166 2.6364 40.1441 2.2114 1.9637

The minimum of the total time for compressing each image is marked in bold.
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